PART A - GRAPH THEORY - 20 MARKS

1. Graph of a Relation (4 marks)

Draw the directed graph of the following relation R in the set of vertices $S=\{0,1,2,3,4,5\}$ $\forall x, y \in S \quad x R y i f f x \bmod 3<y \bmod 3$

2. Circuits (6 marks)

This question is based on the following graph G (the edge numbers are edge names):

a) Starting at vertex A, give an Euler circuit for G (listing the vertices and edges as they are traversed) or explain why this cannot be done

The graph has no Euler circuit because verticess E and G have odd degrees.
b) Starting at vertex A, give a Hamiltonian circuit for G (listing the vertices and edges as they are traversed) or explain why this cannot be done.

A1B2C3D8K13G12J11F10I14H9E4A

3. Connectedness and Complements (10 marks)

This question is based on the following graph G :

(c)
a) List all the connected components of G. Each connected component should be described as the set of all the vertices in the connected component.
G has 3 connected components: $\{C\},\{D\}$, and $\{A, B, E, F\}$
b) Draw the complement G^{c} of the graph G

c) Using the same format as in a) list all the connected components of G^{c} G^{c} has one connected component: $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$

PART B - REGULAR EXPRESSIONS AND FINITE STATE AUTOMATA - 40 MARKS

1. Operations on Languages (10 marks)

Define the following two languages of the alphabet $\Sigma=\{0,1,2\}$:
$\mathrm{L}_{1}=\{0,01,02\}$
$\mathrm{L}_{2}=\{\varepsilon, 2,02\}$
a) List all the elements of $\mathrm{L}_{1} \cap \mathrm{~L}_{2}$
$\{02 \longrightarrow$
b) List all the elements of $\mathrm{L}_{1} \cup \mathrm{~L}_{2}$
$\{0,01,02, \varepsilon, 2\}$
c) List all the elements of $\mathrm{L}_{1} \times \mathrm{L}_{2}$
$\{(0, \varepsilon),(0,2),(0,02),(01, \varepsilon),(01,2),(01,02),(02, \varepsilon),(02,2),(02,02)$
d) List all the elements of $\mathrm{L}_{1} \mathrm{~L}_{2}$
$\{0,02,002,01,012,0102,022,0202$

2. Regular Expression (10 marks)

Write a regular expression to match all sets in a new programming language. Sets are strings like " $\} "$ ", " $\{740\}$ ", " $\{$ hello, $799,0,55$, friend $\} "$ and they are defined as follows:

- A set is a list of zero of more entries surrounded by curly parentheses.
- If the list contains more than 1 entry, the entries are separated by commas.
- An entry is either a name or an integer
- A name is a string of 1 or more lower-case letter (i.e. a to z)
- An integer is either the digit 0 or a string of one or more digits which does not start with the digit 0
You do not need to simplify your regular expression
$\left\{\varepsilon \mid\left(0\left|[1-9][0-9]^{*}\right|[a-z]+\right)\left(,\left(0\left|[1-9][0-9]^{*}\right|[a-z]+\right)\right)^{*}\right\}$
(matching parentheses are shown in colour to improve legibility.)

3. Finite State Automata (20 Marks)
a) Give a regular expression for each of the following finite state automata. Make these regular expressions as simple as possible.
Regular expression

In the next two questions the simplest possible automaton refers to an automaton with as few states as possible.
b) Draw the simplest possible NFA (non-deterministic finite state automaton) on an input alphabet $\mathrm{I}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ which recognizes the following regular expression: $(\mathrm{a} \mid \mathrm{b})(\mathrm{a} \mid \mathrm{c}) *(\mathrm{~b} \mid \mathrm{c})$

c) Draw the simplest possible DFA (deterministic finite state automaton) on an input alphabet $\mathrm{I}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ which recognizes the following regular expression: $(\mathrm{a} \mid \mathrm{b})(\mathrm{a} \mid \mathrm{c})^{*}(\mathrm{~b} \mid \mathrm{c})$. Your DFA should handle all possible inputs

